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Abstract.

Background: Structural magnetic resonance imaging (SMRI) is vital for early Alzheimer’s disease (AD) diagnosis, though
confirming specific biomarkers remains challenging. Our proposed Multi-Scale Self-Attention Network (MUSAN) enhances
classification of cognitively normal (CN) and AD individuals, distinguishing stable (sMCI) from progressive mild cognitive
impairment (pMCI).

Objective: This study leverages AD structural atrophy properties to achieve precise AD classification, combining different
scales of brain region features. The ultimate goal is an interpretable algorithm for this method.

Methods: The MUSAN takes whole-brain sMRI as input, enabling automatic extraction of brain region features and modeling
of correlations between different scales of brain regions, and achieves personalized disease interpretation of brain regions.
Furthermore, we also employed an occlusion sensitivity algorithm to localize and visualize brain regions sensitive to disease.
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Results: Our method is applied to ADNI-1, ADNI-2, and ADNI-3, and achieves high performance on the classification of
CN from AD with accuracy (0.93), specificity (0.82), sensitivity (0.96), and area under curve (AUC) (0.95), as well as notable
performance on the distinguish of sSMCI from pMCI with accuracy (0.85), specificity (0.84), sensitivity (0.74), and AUC
(0.86). Our sensitivity masking algorithm identified key regions in distinguishing CN from AD: hippocampus, amygdala,
and vermis. Moreover, cingulum, pallidum, and inferior frontal gyrus are crucial for sMCI and pMCI discrimination. These

discoveries align with existing literature, confirming the dependability of our model in AD research.

Conclusions: Our method provides an effective AD diagnostic and conversion prediction method. The occlusion sensitivity

algorithm enhances deep learning interpretability, bolstering AD research reliability.

Keywords: Alzheimer’s disease, deep learning, explainable deep learning, multilevel feature learning, structural MRI

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irre-
versible mental disorder that typically affects older
individuals. Currently, over 30 million people world-
wide are affected by dementia disease, 60% to 70% of
which were furtherdiagnosed as AD [1]. The ongoing
global aging trend is expected to result in a signifi-
cant increase in the number of people affected by AD,
thereby further straining public healthcare services
worldwide. Although drug intervention and memory
optimization are helpful to AD, they can only delay
the progression of AD rather than effective cure. It is
highly urgent to make early diagnosis of AD [2].

In recent years, researchers have conducted exten-
sive studies on the diagnosis, etiology, and treatment
of AD using various biomarkers [3—12]. However,
early diagnosis of AD is challenging due to its insid-
ious onset and lack of early symptoms. Objective
biomarkers that can be used to identify patients at
early stages of AD are useful for early interventions
and better disease management. With the increas-
ing processing power of computers, deep learning
methods have been increasingly utilized for auxil-
iary diagnosing a variety of diseases [6, 7, 13—18].
One such application is the use of deep learning on
structural magnetic resonance imaging (sMRI) data
and for computer-aided diagnosis (CAD) of AD and
its prodromal stage (i.e., mild cognitive impairment
(MCI)). Currently, CAD methods can be broadly
classified into three categories: 1) region-based, 2)
whole-brain-based, and 3) patch-based.

Previous studies [19-23] on AD has predomi-
nantly utilized region-based methods using several
common processing steps: 1) manually or semi-
automatically extracting of features from local brain
regions; 2) applying dimensionality reduction algo-
rithms to process MRI data; and 3) using machine
learning or other classifiers to predict outcomes based
on the reduced-dimensional data. In the study con-

ducted by Serensen et al. [24], they extracted the
shape and structural features of bilateral hippocam-
pus as input features for support vector machine
(SVM) to perform classification task. Gutman et
al. extracted brain cortex and hippocampal atrophy
from predefined regions of interest (ROI) as features
to early diagnosing of AD [19, 25]. Furthermore,
Zhang et al. utilized SVM to classify individuals with
MCI from AD using gray matter volumes of non-
overlapping regions across the entire brain [26]. With
the development of brain atlases, Koikkalainen et al.
extracted brain region features from multiple atlases
and constructed a classifier for predicting MCI con-
version [27, 28]. However, manual region extraction
is time-consuming and experience-driving. Addi-
tionally, these extracted regions are based on prior
knowledge, which are not enough to sufficiently rep-
resent all the information in the brain.

Compared to traditional region-based methods,
deep learning methods have demonstrated advan-
tages by utilizing multiple convolutional kernels to
extract various features. As a result, researchers do
not need to focus excessively on how the models
extract and utilize specific features. However, training
deep learning models require significant computa-
tional resources. To reduce computational costs, Qiu
et al. implemented a patch-based method. They ran-
domly sampled 64 x 64 x 64 voxel patches from 3D
MRI images and used them as input features for
a 3D convolutional neural network (CNN) for the
diagnosis of AD [29]. Their task of CN versus AD
classification achieved an accuracy (0.83), sensitiv-
ity (0.76), and specificity (0.89). Meanwhile, Leela
et al. used a uniform sampling technique by select-
ing 27 voxel blocks that were 50 x 41 x 40 in size
from MRI images. They assigned each patch corre-
sponding to a dedicated 3D CNN network [30]. The
results of all 3D CNN networks were fed into a fusion
layer for classification, which achieved accuracy of
0.97 for the CN versus MCI versus AD classifica-
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tion task. Lian et al. adopted a similar patch-based
strategy and divided a complete image into multi-
ple patches [31]. However, they assigned different
weights to different patches using potential pruned
sub-networks. In the CN versus AD classification
task, their method attained better performance with
accuracy (0.90), sensitivity (0.82), and specificity
(0.96). For the pMCI versus sMCI classification task,
their method resulted in an accuracy (0.81), sensitiv-
ity (0.52), and specificity (0.78). Nevertheless, the
patch-based method seems to be a compromise way
to computational resources. It sacrifices a significant
amount of patch-level information and inter-patch
correlations, thus the global information derived from
whole-brain MRI images has been overlooked.

With the continuous advancement of GPU memory
technology, computational resources are more abun-
dant than ever. Consequently, researchers focused
more on studying whole-brain models, which used
features from the entire brain image in network
models. Features have been automatically extracted
through operations such as convolution. Moreover,
utilizing the whole-brain method enables the reten-
tion of global information in the images, effectively
reducing the loss of global information that results
from patch-based methods. Lim et al. proposed a
modified 16-layered visual geometry group (VGG)
network for AD classification using sMRI images
[32]. Li et al. proposed a deep network with resid-
ual blocks for AD diagnosis employing 1,776 sMRI
images from the ADNI database [33]. Hoang et al.
applied a vision transformer to slice whole-brain MRI
images [34]. Lian et al. proposed an attention-guided
model for classification of AD based on the whole
brain [35]. The model utilized pre-trained full-brain
MRI images and visualization of attention maps as
guidance to achieve a secondary diagnostic model
for AD.

As deep learning is a model for automatic feature
extraction and contains a large number of parameters,
explaining how deep learning models work is still an
exploratory task. However, objective interpretation of
deep learning models can still be achieved with meth-
ods such as class activation mapping (CAM) [36].
This approach enables exploration of important brain
regions and plays significant roles in classification
tasks of AD versus CN. CAM methods use a principle
similar to the embedding method in feature selec-
tion. By extracting the weight parameters of a fixed
feature layer, regions linked to the classification cat-
egory are visualized. However, this method showed
two drawbacks: 1) the feature map can only be uti-

lized in the final layer; and 2) information interpreted
is biased towards semantic information, lacking fig-
urative boundaries and relationship between brain
regions. To solve this problem, Selvaraju et al. [37]
proposed the Grad-CAM method, which optimizes
the visualization region by using the gradient weights
of the feature maps on top of CAM. However, since
the probability map resulted from Grad-CAM is in
the middle layer of the model, its resolution and
sample size will be smaller than the original input
image. Moreover, both CAM and Grad-CAM share
the same limitation that the deeper visualizations
tend to favor semantic information over structural
information, resulting in weaker presentations of the
latter. Zeiler et al. summarized several CNN visu-
alization methods to modify and adapt the model’s
architecture [38]. The occlusion sensitivity method
was mentioned in this study, which systematically
masks different parts of the input image with a gray
square to answer the question and monitor the classi-
fier’s output. The model locates objects in the scene
because the probability of correctly recognizing an
object decreases significantly when it is occluded.
The output images resulted from this method are con-
sistent with the size of the original input image, and
the sensitivity of each region to the classifier can be
clearly identified.

When using deep learning methods to classify
AD, the issue of interpretability must be considered.
Qiu et al. borrowed the idea of CAM and proposed
an AD classification explanation model based on
fully convolutional networks (FCN) [29], which is
a type of deep neural network that employs full con-
volutions. It plays a significant role in the field of
image processing. Lian et al. visualized the brain
regions that contribute to AD classification using an
attention-guide method [35]. Chen et al. is aware of
the unexplainability of deep learning and manually
extracted brain regions with special significance, and
established a correlation matrix to explore the impact
of various brain regions on AD classification [39].

Considering the advantages and disadvantages
of the above three methods and the interpretabil-
ity of deep learning, we proposed a multi-scale
self-attention network (MUSAN) that directly uses
whole-brain sMRI as input and introduced an occlu-
sion sensitivity algorithm to explain the predictions
of the model in the current study. First, we hypoth-
esized that different brain regions of different scales
show different effects on AD classification, and there
are interrelated relationships among brain regions.
Therefore, we designed a multi-scale extraction
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scheme and integrated self-attention mechanisms to
model the correlations between brain regions. Then,
the sensitivity of each brain region to AD was pre-
dicted using occlusion. Finally, we evaluated our
method on three datasets for the classification tasks
of CN versus AD and sMCI versus pMCIL.

MATERIALS AND METHODS

Participants

Data used in the preparation of this article
were obtained from the Alzheimer’s Dis-
easeNeuroimaging Initiative (ADNI) database
(https://adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner,MD. The
primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the
progression of MCI and early AD. For up-to-date
information, see https://www.adni-info.org

T1images of 1,080 subjects were used in this work,
which were obtained from the ADNI, including: 1)
ADNI-1 [40], 2) ADNI-2 [40], and 3) ADNI-3 [40].
The demographic information of the subjects is sum-
marized in Table 1.

ADNI-1: The baseline ADNI-1 dataset consists of
1.5T T1-weighted sMRI scans. These subjects were
divided into three categories (i.e., AD, MCI, and
CN) depends on the standard clinical criteria, includ-
ing Mini-Mental State Examination (MMSE) scores
and Clinical Dementia Rating. According to whether
MCT subjects would convert to AD within 36 months
from the baseline assessment, the MCI subjects were
further subdivided into stable MCI(sMCI) that were

always diagnosed as MCI at all time points (0-96
months), and progressive MCI (pMCI) that converted
to AD within 36 months of baseline. Above all, the
baseline ADNI-1 datasets contain 189 AD subjects,
154 pMCI subjects, 178 sMCI subjects, and 229 CN
subjects.

ADNI-2: The baseline ADNI-2 dataset consists
of 3T Tl-weighted sMRI scans. According to the
same clinical criteria as those used in ADNI-1, these
subjects were divided into two categories as 62 AD
subjects and 130 CN subjects.

ADNI-3: The baseline ADNI-3 dataset consists of
3T T1-weighted sMRIscans. And those subjects were
divided into two categories as 41 AD subjects and 97
CN subjects depends on the same clinical criteria as
ADNI-1 and ADNI-2.

MRI data acquisition

Raw unprocessed T1-weighted MRI images
were downloaded from the ADNI database, which
were scanned using different MRI scanners at
multi-sites. Details about data acquisition pro-
tocol can be found in ADNI official webpage
(https://adni.loni.usc.edu/methods/documents/).

Data preprocessing

We pre-processed all sMRI scans using a stan-
dard pipeline as shown in Fig. 1. Specifically,
the direction and origin coordinates of the MRI
scans were normalized using Simple ITK [41].
Then, the brain skull and dura were stripped
by Deep-brain [42]. The FLIRT [43] method in
the FSL(https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/) pack-
age was used to linearly align all SMRI to the MNI152
template to remove the global linear difference and
also to resample all images to the same spatial shape

Table 1
Baseline demographic information of the subjects

Dataset Group Gender Age MMSE
(Male/Female) (Mean &+ SD) (Mean £ SD)
ADNI-1 AD 180 (96/89) 75.33 +£7.58 22.594+2.97
pMCI 154 (98/56) 74.32+7.14 26.58+1.70
sMCI 178 (117/61) 73.71+7.62 27.34+1.81
CN 229 (119/110) 74.324+6.26 28.98+1.16
ADNI-2 AD 62 (36/26) 75.944+7.92 20.64 +£4.23
CN 130 (67/63) 7472+ 6.34 28.75+1.38
ADNI-3 AD 41 (22/19) 72.75+9.63 22.76 +3.56
CN 97 (36/61) 69.91+6.74 29.09+1.11

AD, Alzheimer’s disease, SMCI, stable mild cognitive impairment; pMCI, progressive mild
cognitive impairment; CN, cognitive normal; MMSE, Mini-Mental State Examination; SD,

standard deviation.
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MNI152_1mm
deep-brain FSL align N3 correction lutznsny Normalized
Skull-striping image Registered image N3 Correction image Normal image

Fig. 1. Image preprocessing steps using an AD case as example.1) Skull - striping image, 2) MNI152_1mm as matching template, 3) N3

Correction, and 4) Normalized image.

(181 x 218 x 181). Finally, all images were corrected
for intensity using the N3 algorithm [44] and the
intensity of image was normalized to a range of 0
to 1.Retico mentioned that using whole-brain will be
able to obtain higher area under curve (AUC) [45],
and the algorithm using whole-brain can also reduce
the resources consumed by segmentation, the need
for additional design of segmentation models, and the
loss of accuracy caused by segmentation leading to
bias in the classification model for downstream tasks.
Therefore, after preprocessing the whole-brain data,
we do not perform any segmentation operation and
retain all the features.

Multi-scale self-attention network (MUSAN)

As illustrated in Fig. 2, we proposed a comprehen-
sive MUSAN to capture multi-level discriminative
knowledge from the whole-brain sMRI images. Ini-
tially, we utilized ResNet [46] as the fundamental
classification backbone. Afterwards, we enhanced
model’s proficiency in feature extraction by employ-
ing multi-scale feature extraction and built the
relationship between different scaled feature maps by
self-attention. Finally, the global linear layer was used
to classify the subjects through the extracted feature
maps.

3D convolutional neural networks (CNNs)
Deep CNNS offer an end-to-end learning method

that learns features through multiple layers of
convolutional operations and multi-level feature

combinations [47]. Essentially, it combines high-
level and low-level features and enriches them on the
feature level through multi-level feature stacking. In
our work, we utilized 3D CNNs, which can perform
convolutional operations on 3D volumes. Compared
to 2D CNNSs, 3D CNNs can filter features in the x,
y, and z directions, allowing improved integration
of spatial information in images. In this network, a
3D CNN with a standard convolutional kernel size of
7 x T x 7 was used to filter the input images.

Scale pyramid convolution (SPC)

Despite the fact that current 3D CNNs are capable
of achieving multi-scale feature extraction by com-
bining high-level and low-level features, they can
only extract information from a single receptive field
within the same level of feature extraction. Therefore,
they are not suitable for extracting features from the
brain regions. To address this issue, we took inspi-
ration from the pyramid feature extraction method
[48] and proposed a novel feature extraction module
named scale pyramid convolution (SPC). In this mod-
ule, we divided the features into multiple branches,
each with a channel number of C. By utilizing par-
allel computing of tensor information in different
branches, our network worked rapidly to extract and
integrate multi-scale features. For each branch, we
have utilized convolutional kernels of different sizes
to extract information from different receptive fields,
obtaining different spatial resolutions and depths.
Finally, we fused the computation results of these
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Fig. 2. The architectural diagram of the multi-scaled self-attention network (MUSAN). MUSAN is comprised of 3D convolution and multi-
scaled self-attention (MUSA) blocks. Each MUSA block consists of a residual-structured 3D convolution and a MUSA module. The MUSA
module incorporates spatial pyramid convolution (SPC) and self-attention mechanisms.

branches together using concatenation and obtained
feature maps with the same size as the original input.
This indicates that the SPC module is a plug-and-play
deep learning model that can be conveniently applied
to various image processing tasks.

Specifically, we proposed a new criterion for
selecting group size without using additional parame-
ters. We eventually divided the number of channels of
each convolutional kernel into multiple groups, and
the size of each group is evenly distributed according
to the total number of groups. This criterion can be
expressed as:

§=C//G

where the quantity C is the channel of input feature
map, the G is the total number of groups, and g is
the group size. Note that C should be divisible by
G. Finally, the multi-scale feature map generation
function is given by:

F; = Conv(k; x ki x ki, g)(X) i=0,1,2...G-1

where the i—th kernel size k; =2 x (i+1)+1, and
F; € ROHXWxD donates the feature map with dif-
ferent scales. The whole brain feature map could be

obtained by concatenation way as:

F = Cat([Fy, F1,...,Fg-1]) i=0,1,2...G-1

Self-attention layer

In this study, we utilized the SPC module to extract
multi-scale spatial information. However, CNN is
limited to handle solely local receptive fields, and
the inability to obtain global information emerged as
a challenge. Recently, Wang et al. [49] introduced
the self-attention module to model the correlation
between multi-scale information. This method can
better capture the relationship between different
scales, thereby improving the performance and accu-
racy. In fact, the self-attention module is capable
of mapping the input features into query, key, and
value vectors. The key and value vectors represent the
feature information extracted by each convolutional
block from sMRI images, while the query vector
determines ROIs that needs to be focused on dur-
ing the learning process. This module enables the
extraction of important features from sMRI images
for classification tasks. By using the 1 x 1 x 1 con-
volution filter, the key, query, and value will be
transformed to vectors and can be denoted by k(x),
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q(x), v(x) as follow:

Key : k(x) = Wix
Query : q(x) = Wyx

Value : v(x) = Wyx

Here, x € R€*V is the feature from SPC module.

C is the number of channels and N is the location
embedding of features from SPC output. Wy, Wy,
W, are all 1 x 1 x 1 convolution filters. So the self-
attention map (a;;) can be calculated as:

exp(k(xi)"q(x)))

a,-,j = N
S k(x)Tq(x;)
i=1

Here, a;; donates the relationship between i—th
region and j—-th region. By adopting this method,
it becomes feasible to model the inter-relationships
between diverse features, thereby facilitating the
computation of correlations between multi-scale fea-
tures within the SPC module. Consequently, this
leads to the realization of information exchange
across multiple scales of brain regions. The out-
put of attention layeris O = (01,03, ... ,0y)e REN
where

N
§0; = w (Z al-,jh(xl-)>

i=1

In order to keep the same number of channels as
the inputs, Wis the 1 x 1 x 1 convolution filter.

Multi-scaled self-attention block (MUSA block)

We proposed a novel MUSA block that combines
the SPC module with self-attention mechanisms to
enable efficient extraction and correlation modeling
insMRIimages. The MUSA block is easy to integrate
into any 3D network thanks to its scalable design.
The input is first processed by a 3D CNN to extract
non-linear features, and then fed into the MUSA
module. Within the MUSA module, the SPC module
initially processes the input features to extract multi-
scale feature information. The output of SPC is then
subjected to self-attention mechanism for modeling
multi-scale correlations of brain regions. The output
is a 3D image with the same size as the input image.
After applying MUSA blocks to the input, pooling is
performed to down-sample the output, followed by

residual connections to avoid issues such as gradient
vanishing.

Occlusion sensitivity

To investigate the impact of brain regions on AD,
we introduced the concept of occlusion sensitivity to
get the effect of local brain regions on AD as shown in
Fig. 3. First, we employed a sliding window approach
to occlude the sSMRI images by setting the voxel
values within the occlusion blocks to 0. In this exper-
iment, we utilized occlusion blocks of size 8 x 8 x 8.
In order to ensure sufficient smoothness in the occlu-
sion sensitivity map, we set the overlap rate of the
sliding window to 0.25. The occluded images are
then fed into our pre-trained model to obtain occluded
score;. Subsequently, these scores are compared with
the predicted scores score g Obtained from the un-
occluded original images, which yielded a different
measure (diff) between the two scores. Finally, we
arranged the scores of all occlusion blocks in the
order of occlusion to reconstruct the occlusion sensi-
tivity map of the sMRI images. When the diff value
approaches to 0, it indicates a lower sensitivity in the
corresponding region, suggesting that changes in that
region would not significantly impact disease diagno-
sis. On the other hand, when the diff value approaches
to—1 or 1, it indicates that our model exhibits sensitiv-
ity to that particular region in the individual, implying
that alterations in these regions would have an impact
on disease diagnosis.

Experimental setting

The proposed MUSAN was implemented on a sin-
gle GPU (NVIDIA TITAN 24GB) using Python3.9
based on Pytorch 1.12 package. The input of our
network has been prepared into the same spatial
shape 128 x 128 x 128 by spatial padding and resize.
The model was trained by the cross-entropy loss
with the Adam optimizer for 200 epochs and L2-
Regularization value of le™*. The training set was
augmented online by the combination of: 1) randomly
flipping the brain images, 2) randomly rotate the brain
images, and 3) randomly contrast transform the brain
images. During training, resampling is used to bal-
ance the proportion of training categories that will
be.

To evaluate the generalization ability of various
methods, we used ADNI-1 as the training set and
ADNI-2 and ADNI-3 as the test sets during the exper-
iment’s evaluation phase. Quantitative assessment of
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Fig. 3. The computational workflow of the occlusion sensitive algorithm. The algorithm employs region-wise occlusion by inputting occluded
images into the network to predict the difference between the predicted results of the modified image and the original image.

performance was assessed using accuracy (ACC),
sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristic curve (AUC).
The AUC measures the model’s capacity to distin-
guish positive and negative samples by calculating
the area under the AUC. In addition, we conducted
comparative experiments with state-of-the-art whole-
brain-based approaches in our empirical evaluation,
and further performed ablation studies on the pro-
posed modules to demonstrate the superiority and
correctness of our model.

1) ResNet, a conventional 3D CNN, has been
extensively used to tackle the problem of gradi-
ent vanishing in deep networks by incorporating
residual modules. In this study, Liu et al.
[50] employed ResNet to classify AD from
healthy controls using features from hippocam-
pal regions. Furthermore, Bae et al. [51] applied
transfer learning using ResNet for the classifi-
cation of sMCI and pMCI on MRI images.

2) SEResNet, a neural network architecture that
utilizes ResNet as its backbone and introduces
a squeeze-and-excitation (SE) block module.
The SE blocks learn a set of weights that
capture channel-wise dependencies within the
feature maps. These weights are subsequently
employed to scale the feature maps before they
are propagated to the subsequent layer. Ji et al.
[52] applies the SeResNet architecture to obtain
features of gray matter and white matter for the
classification of CN, MCI, and AD.

3) DenseNet [53] addresses the vanishing gradient
problem in very deep neural networks by intro-
ducing dense connections between layers. In a
dense block, each layer is connected to every
other layer in a feed-forward fashion, creating

a dense connectivity pattern. This allows fea-
ture reuse and encourages feature propagation
throughout the network, leading to better gradi-
ent flow and improved model performance. He
et al. [54] utilized DenseNet for the classifica-
tion of AD and CN on MRI images.

RESULTS
Classification results of CN versus AD

In the task of CN versus AD, we compared our
MUSAN to three competing methods. We trained the
model in ADNI-1 and tested them in ADNI-2 and
ADNI-3, respectively. We quantified the performance
of our model using four different metrics, including
ACC, SEN, SPE, and AUC in Table 2. Importantly,
our proposed MUSAN outperforms these methods by
1%~2% in accuracy on the ADNI-2 dataset, while
attaining acceptable ACC (0.956), SEN (1.000), SPE
(0.853), and AUC (0.968) on the ADNI-3 dataset.
Although the MUSAN approach yielded a sensitivity
score of 1.00, which might highlight some bias in
the model, there is no need to worry much about the
deviation introduced by the model as the specificity
achieves a commendable level of 0.85. Furthermore,
the AUC also reaches a value of 0.968, highlighting
the model’s discriminative capacity.

Classification result of sMCI versus pMCI

In the task of sMCI versus pMCI, we also com-
pared our MUSAN network to three competing
methods. The model was trained on ADNI-1, 10%
subjects were randomly selected for validation and
another 10% for evaluation. Performance metrics,
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917

Result of CN versus AD classification on ADNI-2 and ADNI-3, trained on ADNI-1 with
whole-brain-based methods

Methods ADNI-2 ADNI-3

ACC SEN SPE AUC ACC SEN SPE AUC
ResNet50 [51] 0911 0.857 0.887 0948 0906 0.889 0.780  0.906
SEResNet50 [52] 0.901 0.907 0.790 0928 0913 0939 0.756  0.900
DenseNet121 [54] 0922 0.873 0.877 0949 0920 0.941 0.781 0.935
ResAttnNet50 [57]  0.927 0900  0.871 0945 0913 0914 0.780 0.926
MUSAN (Ours) 0932 0962 0.822 0953 0956 1.000 0.853  0.968

Table 3

Result of pMCI versus sMCI classification on the ADNI-1 test
set, trained on the ADNI-1 training set with whole-brain-based

methods

Methods ADNI-1

ACC SEN SPE AUC
ResNet50 [51] 0.755 0.667 0.588 0.745
SEResNet50 [52] 0.735 0.750 0.353 0.645
DenseNet121 [54] 0.775 0.750 0.529 0.773
ResAttnNet50 [57] 0.782 0.761 0.516 0.787
MUSAN (Ours) 0.848 0.743 0.839 0.863

including ACC, SEN, SPE, and AUC were used to
assess the model’s effectiveness (Table 3). As aresult,
our proposed method significantly improves the
recognition accuracy of sMCI and pMCI. Specially,
it can be observed that DenseNet121 performs much
better than ResNet50 (Table 3). These results indi-
cate that the performance improvement is attributed
to the network depth and dense connections, which
demonstrates the effectiveness of multi-scale dense
information exchange for recognizing sMCI and
pMCI. Moreover, the accuracy increases from 0.755
to 0.848 and the AUC from 0.745 to 0.863 when
the residual modules in ResNet50 was replaced by
MUSA modules. These results provide sufficient
evidence for the validity of our multi-scale and
brain region-related modeling method in sMCI ver-
sus pMCl classification tasks. However, SEResNet, a
spatial attention mechanism network that focuses on
spatial information within the same scale, performs
worse in the sSMCI versus pMCI task. It indicates that
constraining information within the same scale will
lead to inferior outcomes and hinders the interaction
among multi-scale information.

Ablation experiment

To examine how multi-scale feature extraction and
self-attention mechanism brain modeling affect the
classification of CN versus AD and sMCI versus
pMCI, ablation experiments were carried out. Our
method employs ResNet50 as the baseline model, and
three various experiments have been subsequently

performed: 1) replacing the residual connection mod-
ule with the SPC module based on ResNet50; 2)
replacing the residual connection module with the
self-attention module which is based on ResNet50;
and 3) replacing the residual module with a con-
catenated module of SPC and self-attention, which
is based on ResNet50.

To this end, we achieved satisfactory results on
the CN versus AD classification task as compared to
ResNet network (Fig. 4). However, this improvement
was relatively small even combining MUSA module,
indicating that the ResNet framework is already capa-
ble of handling the CN versus AD task. This also
suggests that deep learning models can solve tasks
with distinct anatomical structures using simple mod-
els with high accuracy. However, as shown in Fig. 5,
the ResNet performs poorly on sSMCI versus pMCI
task. By using the self-attention module, we were
able to improve the accuracy from 0.755 to 0.782 and
the AUC from 0.747 to 0.787, demonstrating the use-
fulness of self-attention mechanisms to model brain
region features for disease classification. By using the
SPC multi-scale mechanism, we were able to improve
the accuracy from 0.755 to 0.815 and the AUC from
0.747 to 0.804. These findings suggest that consid-
ering multi-scale fusion of brain region information
can effectively identify brain regions related to dis-
ease. This also confirms that different brain regions
at different scales are affected by AD. By combining
SPC with self-attention, we found that the accuracy
of ResNet was increased from 0.755 to 0.848 and the
AUC from 0.747 to 0.863, fully demonstrating the
correctness of our multi-scale brain region feature
correlation modeling.

Occlusion sensitivity maps

We examined discriminative brain regions for CN
versus AD and sMCI versus pMCI at the cohort and
individual levels, respectively. First, we normalized
our occlusion sensitivity maps onto the Anatomical
Automatic Labeling (AAL) template and filtered out
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Fig. 4. Result of CN versus AD on the ADNI-2 dataset, obtained by the ResNet, ResNet + Self-Attention, ResNet + SPC, and MUSAN on
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Fig. 5. Result of sSMCI versus pMCI on the ADNI-1 dataset, obtained by the ResNet, ResNet + SelfAttention, ResNet + SPC, and MUSAN

on the ADNI-1.

the six regions with maximum sensitivity based on
the occlusion sensitivity value of the brain regions
mapped onto the AAL template. As shown in Tables 5
and 6, the discriminating regions of CN versus AD
were mainly in the medial temporal lobe and cerebel-
lar regions, such as the hippocampus, amygdala, and
parahippocampal gyrus, whereas the discriminating
regions of sMCI versus pMCI were mainly located
in the posterior cingulate gyrus, the pallidum, and
inferior frontal gyrus. In addition, we also showed
the results of our method on individual level (Figs. 6
and 7).

DISCUSSION
Comparison with previous work

In this study, we also used some difficult-to-
reproduce state-of-the-art methods as comparisons,

whose original data and source code were not publicly
available. It is relatively difficult for us to reproduce
the model using the details disclosed in the literature.
Although it would be somewhat unfair to rely directly
on the original authors’ results for comparison, it is
worth discussing and analyzing. Table 4 shows the
outcomes of three traditional methods and four deep
learning methods, respectively, for the CN versus AD
and sMCI versus pMCI tasks. Compared to the three
traditional methods [26, 55, 56], the deep learning
methods [31, 35, 57-59] demonstrate significantly
superior performance across the four evaluation met-
rics. Additionally, as shown in the results of the
region-based approaches [26], it not only incurs
substantial time consumption in extracting ROI but
also fails to achieve satisfactory outcomes. In com-
parison to deep learning techniques, our proposed
method achieves higher accuracy. Although Shi et
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Fig. 6. Illustrations of occlusion sensitivity algorithms in AD cohort. The first row is an average plot of the sensitivities of all samples in the
AD test cohort and mapped onto the AAL template. The next three rows are plots of the sensitivities of the individual sample sensitivities,

also mapped onto the AAL template.

al. [58] achieves an impressive accuracy of 0.97
on the CN versus AD task, the limited scale of
their utilized dataset restricts the generalizability of
their results. The hierarchical-CNN algorithm [31]
achieves the best specificity for the CN versus AD
task, indicating the highest precision in correctly
diagnosing CN cases. However, it exhibits the poor-
est sensitivity among all deep learning algorithms,
implying a higher probability of misclassification
in AD patients’ diagnosis. Such misdiagnosis can
potentially lead to AD patients being classified as
CN, thus missing the optimal treatment window. The
reasons for this phenomenon, however, might be due
to the fact that the data distribution is not balanced.
As shown in Table 4, the same dataset was used
in hierarchical-CNN and attention-CNN, as well as
voxel-based morphometry and ROI-based methods.
However, all these methods exhibit high SPE and low
SEN on CN versus AD, which leads to more false neg-
atives. In comparison, we used resampling to ensure
data balance and obtained the best sensitivity (0.96)

in addition to the highest accuracy in the CN versus
AD task. This result suggested that it is necessary
to accurately balance the dataset to obtain a better
SEN, and then result in fewer misclassifications of
AD patients.

Notably, DenseNet shows significantly higher
ACC scores than the other two methods on both
datasets. This is consistent with the conclusions
drawn by Hazarika et al. [60], who performed a
multi-class classification of CN, MCI, and AD using
DenseNet on MRI 2D slices, and achieved bet-
ter performance than the VGG, ResNet, and other
networks. This consistency underscores the superi-
ority of DenseNet’s densely connected architecture
to improve classification outcomes. Furthermore,
it highlights the significance of interplay among
features at multiple scales for enhancing AD clas-
sification performance.

Our MUSAN model distinguishes itself from
other deep learning models. In comparison to the
hierarchical-CNN, our MUSAN model is based
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pMCI cohort on AAL template
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Fig. 7. Illustrations of occlusion sensitivity algorithms in pMCI cohort. The first row is an average plot of the sensitivities of all samples in
the pMCI test cohort and mapped to the AAL template. The next three rows are plots of the sensitivities of the individual sample sensitivities,

also mapped to the AAL template.

on whole-brain analysis, eliminating the need for
patch-based partitioning of the original images, thus
preserving more global information. Compared to
the attention-CNN approach, our proposed method
is more concise. The attention-CNN [35] requires
pre-training to obtain attention maps, which served
as prior knowledge for subsequent classification
models. However, the classification performance
of the attention-CNN is susceptible to limitations
imposed by the pre-trained model. In contrast, the
MUSAN model employs a self-attention framework
for adaptive learning of attention maps. It utilizes the
classification results to constrain the attention maps
and continuously optimizes them through iterations.
Compared to Zhang’s method [57], we proposed a
multi-scale computation approach and constructed a
multi-scale information interaction model.

In summary, 1) the deep learning methods out-
perform the traditional methods in both the CN
versus AD and sMCI versus pMCI classification

tasks, indicating that deep learning’s automatic fea-
ture extraction method is more effective in describing
brain information compared to manually crafted fea-
ture extraction methods; 2) our proposed approach
demonstrates superior performance as compared to
other deep learning methods by showing higher accu-
racy and AUC in the SMCI versus pMCI classification
task. This clearly illustrates that our model possesses
better feature representations and generalization abil-
ities in complex and challenging tasks; and 3) our
method utilizes whole-brain data without patch seg-
mentation and models the interrelationships between
brain regions using a self-attention mechanism.

Comparisons between two tasks

Our proposed model was applied to both the CN
versus AD and sMCI versus pMCI tasks. The results
were consistent with those of previous studies [27, 28,
31, 35, 57, 59, 61-63]. Our model showed improved



Table 4
A brief description of the state-of-the-art studies using baseline SMRI data of ADNI-1 for AD classification (AD versus NC) and MCI conversion prediction (pMCI versussMCI)

sMCI versus pMCI

CN versus AD

Methods

Subjects

Modality

References

classification

SEN

classification

SEN

AUC
0.64

SPE
0.69

SPE AUC ACC
0.87 0.66

0.8

ACC
0.79

0.47

0.79

Region-based
method

MRI 358AD +670MCI +429CN

[13]
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0.77 0.83 0.87 0.64 0.36 0.68 0.59

MRI 358AD +670MCI +429CN Voxel-based 0.81

[44]

morphometry

0.86 0.88 0.69 0.4 0.73 0.63

0.77

0.82

Landmark-based
morphometry

358AD + 670MCI +429CN

RI

M

[43]

0.95 0.98 0.97 0.78 0.68 0.86* 0.8

0.97

Deep polynomial

network

41AD +99MCI + 52CN

MRI

[49]

0.78
0.92%*

0.85
0.81
0.86
0.84

0.53
0.81
0.57

0.81
0.82
0.82
0.85

0.95
0.98
0.96*

0.97
0.92
0.94
0.82

0.82
0.91

0.9

Hierarchical-CNN

3D-CNN

358AD + 670MCI +429CN
200AD +404MCI+231CN
358AD + 670MCI + 429CN
189AD +332MCI + 229CN

MRI
MRI
MRI
MRI

[18]

[45]

0.91
0.92
0.93

0.79
0.86

0.88
0.96

Attention-CNN

Multi-scale

[22]

0.74

0.95

MUSAN (ours)

self-attention

performance in the CN versus AD task but strug-
gled to achieve satisfactory results in the sMCI versus
pMCI task. This could be resulted from the smaller
inter-class distance between sMCI and pMCI but
larger inter-class distance between CN and AD. Liu
et al. [62] employed voxel-level feature extraction
methods and failed to achieve a recognition accu-
racy of 0.7 in the sSMCI versus pMCI task. Similarly,
both the voxel-level approaches of Zhang and our
proposed method achieved good results in this task.
Furthermore, Koikkalainen et al. utilized patch-based
approaches for SVM or linear analyze classification
models [27, 28], but their results were still inferior
to those of patch-based deep learning models. This
indicates that a deeper feature extractor is required
for the classification of SMCI and pMCI, as the fea-
tures extracted by traditional methods are insufficient
to capture the differences between sMCI and pMCI.

Figure 5 illustrates the differences between the CN
versus AD and sMCI versus pMCI tasks. The brain
regions for the CN versus AD task primarily involved
in the hippocampus, amygdala, and vermis. This find-
ing aligns with those from Ossenkoppele et al. [64],
which demonstrated that the medial temporal lobe
plays a critical role in the development of AD. In
their work, Poulin et al. [65] also proposed a rela-
tionship between the amygdala and AD and pointed
out that amygdala atrophy plays a crucial role in the
early diagnosis of AD. In a recent study, Uttam et al.
[66] validated that hippocampal and amygdala vol-
umes were helpful to differentiate AD patients from
CN. Sjobeck et al. [67] found that atrophy of Ver-
mis can assist in determining the disease process in
AD by studying the morphology of neuronal and glial
changes. However, the performance of sMCI versus
pMCI patients does not exhibit the same generality as
the CN versus AD task. The sensitive regions for the
SsMCI versus pMCI task include the cingulum, pal-
lidum, and inferior frontal gyrus. In a recent study,
Liu et al. [68] suggested that diffusion kurtosis imag-
ing techniques could be used to study the microscopic
changes in the cingulum in patients with MCI and to
assess the cognitive function of MCI patients. Lin
et al. [69] also suggested that activity of the infe-
rior frontal gyrus helps protect memory from AD in
older adults. These discriminative regions align with
those results mentioned in multimodal analyses [70].
While the CN versus AD task demonstrates general-
ity, the classification task for sMCI and pMCI is more
influenced by individual differences.

Therefore, due to the complexity of the sMCI
versus pMCI task, we proposed MUSAN, a model



922 X. Fan et al. / Early Diagnosing and Transformation Prediction of Alzheimer’s Disease

that can extract multi-scale information and inte-
grate the correlations between different scales of
information. Through ablation experiments, we com-
prehensively demonstrated the effectiveness of two
proposed modules, SPC and self-attention, in classi-
fying CN versus AD and sMCI versus pMCI. We
observed that the impact of the SPC module sur-
passes that of self-attention. This result indicates
that extracting multi-scale brain region information
and integrating them is beneficial for improving the
classification accuracy of both tasks. It also indi-
cates that prediction of AD progression should focus
more on features or brain regions at different scales.
Additionally, we are impressed by the performance
enhancement brought by self-attention, as it con-
firms our assumption that the correlation between
brain regions can aid in diagnosing of AD. The suc-
cess of self-attention also validates the potential of
investigating inter-regional correlations, as it can only
measure the correlation between two features rather
than the correlation among multiple feature combi-
nations.

Model interpretability

The occlusion sensitivity is used to address the
interpretability problem in deep learning models.
Compared to traditional region-based approaches,
our proposed method offers a coarser level of inter-
pretability. Sarasua et al. focused on AD classification
based on features from the hippocampus to inves-
tigate the impact of hippocampal atrophy on AD
[19, 71]. Similarly, Zhang et al. extracted features
from specific brain regions to study AD [26]. These
traditional methods determine the level of inter-
pretability based on the granularity of the extracted
brain regions. In fact, these methods [27, 28] even
provide a weight index to represent the contribution
of each brain region to AD. However, the classifica-
tion accuracy of traditional algorithms significantly
lags behind to that of deep learning methods. Fur-
thermore, the relationship between brain regions and
AD discovered by these methods may be influenced
by model biases. Additionally, datasets used in meth-
ods are limited, and they do not differentiate between
general patterns and individual differences.

Deep learning models can achieve significantly
better results than traditional algorithms on large-
scale datasets. Therefore, if we can explain which
brain regions contribute to the performance of deep
learning models, it would provide more reliable ref-
erence information for doctors or patients. Compared

Table 5
Ordered significant regions from the occlusion sensitivity map
related to the prediction of AD patients from normal individuals

Region Occlusion Sensitivity
Value
Vermis-10 0.1165
Left Amygdala 0.1031
Right Amygdala 0.0986
Vermis-9 0.0956
Left Hippocampus 0.0951
Right Hippocampus 0.0889
Table 6

Ordered significant regions from the Occlusion sensitivity Map
related to the prediction of pMCI normal individuals

Region Occlusion Sensitivity
Value

Right Posterior Cingulate cortex 0.0600

Right Anterior Cingulate cortex 0.0424

Left Pallidum 0.0418

Right Pallidum 0.0413

Left opercular part of 0.0364

Inferior Frontal Gyrus,

Right Caudate 0.0328

to the studies [29, 35, 57], our proposed method can
obtain more fine-grained brain region predictions.
The regions of interest mentioned in the brain almost
cover the entire brain, requiring the use of a threshold
to determine the most important brain regions. How-
ever, the values represented by the obtained regions
of interest indicate the model’s prediction of AD risk
in that region and the direct contribution of that region
to the prediction score. In previous literature [31,
72], deep learning was combined with region-based
approaches to improve model interpretability. This
method offers a rapid way to enhance interpretability,
butit cannot ignore the loss of global information dur-
ing the training process. In our method, the shape of
the block can be customized, enabling analysis of spe-
cific brain regions by adopting their specific shapes.
Therefore, our method not only maintains high recog-
nition accuracy but also improves the interpretability
of deep learning models, thus expanding the scope of
deep learning research in the medical field.

Limitations and feature work

In this study, we utilized an occlusion sensitivity
method for interpreting the neural network. How-
ever, due to the difficulty in extracting brain region
masks, we could only use square-shaped occlusion
templates that do not specifically represent particu-
lar brain regions. In future work, we are planning to
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introduce a registration-based method to automati-
cally obtain brain region masks, and then use them to
perform occlusion in a partitioned manner, allowing
for targeted investigation of the impact of a specific
brain region associated with AD. This registration-
based segmentation will avoid the retraining problem
of traditional segmentation models and the ability
to use different templates for analysis after registra-
tion will be more effective in realizing the analysis
of brain regions. Additionally, although sensitive
regions have been successfully identified using occlu-
sion sensitivity map, these regions did not provide
useful information for the training steps of our model.
Therefore, in future work, if we can use occlusion sen-
sitivity to constrain the model, we may obtain more
precise results. In addition, our method used only
MRI images for the study and did not fully utilize
information such as MMSE, which is readily avail-
able. Although information such as MMSE may be
able to improve the model’s classification of AD, we
have not yet found a suitable method to balance the
role of information such as MMSE with that of MRI
images in the classification, and simply considering
MMSE may leave the model lacking in the analysis
of MRI images. Therefore, we will explore the incor-
poration of this additional information in the future
work.

Since the amount of collectable data remains lim-
ited, utilizing more extensive data sets can strengthen
the models. Generative Al’s current prevalence offers
a solution for generating images in a controlled
manner. In future research, we aim to employ the
Diffusion model [73, 74] to generate separate AD
and CN sample data and utilize distinct prompts to
regulate the process.

Conclusions

In this work, we proposed a multi-scale self-
attention deep learning model that significantly
improves the identification accuracy of sMCI versus
pMCI and CN versus AD task. Through occlusion
sensitivity, we predicted the brain regions associ-
ated with individuals of AD. Moreover, we evaluated
our method on three datasets, and these experimen-
tal results demonstrated that our method outperforms
several other advanced methods in terms of perfor-
mance.
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